2668

References

- Bryan, R. F., Hartley, P., Miller, R. W. & Shen, M.-S. (1980). Mol. Cryst. Lig. Cryst. 62, 281-309.
- Koningsveld, H. van (1982). Cryst. Struct. Commun. 11, 1423-1433.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1992). SHELXTL/PC. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsion, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1990b). REDU4. Data Reduction Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.
- Takwale, M. G. & Pant, L. M. (1971). Acta Cryst. B27, 1152-1158.

Acta Cryst. (1995). C51, 2668-2671

Redetermination of the Structures of 1,4,7-Trioxa-10,13-dithiacyclopentadecane and 1,4,7,10-Tetraoxa-13,16-dithiacyclooctadecane

Alexander J. Blake,† Christian Radek and Martin Schröder†

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 9 May 1995; accepted 19 June 1995)

Abstract

Both 1,4,7-trioxa-10,13-dithiacyclopentadecane, $C_{10}H_{20}$ -O₃S₂, and 1,4,7,10-tetraoxa-13,16-dithiacyclooctadecane, $C_{12}H_{24}O_4S_2$, show *exo*-oriented S and *endo*-oriented O atoms. The torsion angle of the SCH₂CH₂S moiety is *anti* [-165.93 (8)°] in the former and *gauche* [60.0 (2)°] in the latter. The latter exhibits C₂ symmetry through the midpoints of the C3—C3' and C11—C11' bonds.

Comment

We have been investigating the coordination chemistry of mixed O/S donor ionophores such as 1,4,7-trioxa-10,13-dithiacyclopentadecane ($C_{10}H_{20}O_3S_2$, [15]aneS₂O₃) and 1,4,7,10-tetraoxa-13,16-dithiacyclooctadecane ($C_{12}H_{24}O_4S_2$, [18]aneS₂O₄). Both ionophores have been found to adopt *endo* as well as *exo* coordination modes with a range of transition metal ions (Bell, 1987; Reid, 1989; Blake, Gould, Reid & Schröder, 1990; Blake, Reid & Schröder, 1990; Blake, Collison, Gould, Reid & Schröder, 1993; Blake, Gould, Radek & Schröder, 1994; Radek, 1995). We recently reported the single-crystal X-ray structure of 1,4,7,10,13-pentaoxa-16,19-dithiacyclohenicosane ([21]aneS₂O₅) sesquihydrate (Blake, Gould, Harris, Parsons, Radek & Schröder, 1995), which shows extended inter- and intramolecular hydrogen bonding with molecules of water of crystallization. As part of this study, we have redetermined the structures of the title compounds in order to improve on earlier structure determinations (Dalley, Larson, Smith, Matheson, Izatt & Christensen, 1981) and to establish whether hydration and similar extended hydrogen bonding are present in these structures.

The single-crystal X-ray structures of [15]aneS₂O₃ (Fig. 1) and [18]aneS₂O₄ (Fig. 2) do not exhibit any new features compared with the earlier structure determinations. The differences in bond lengths, angles and torsion angles are marginal but the estimated standard deviations were improved by a factor of up to four. A discussion of the conformation of these compounds has been given (Dalley, Larson, Smith, Matheson, Izatt & Christensen, 1975, 1981; Wolf, Hartman, Storey, Foxman & Cooper, 1987). It should be emphasized, however, that Wolf, Hartman, Storey, Foxman & Cooper (1987) consider an S-C-C-S gauche torsion angle to be destabilizing (repulsive gauche effect) whereas an O-C-C-O gauche torsion angle is considered to be stabilizing (attractive gauche effect). [15]aneS₂O₃ conforms to these conditions, while

Fig. 1. The structure of the $[15]aneS_2O_3$ ionophore. Displacement ellipsoids enclose 50% probability surfaces.

[†] Present address: Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England.

S1

C2

C3

S4

C5 C6

07

C8

C9 010

CH

C12

013

C14

C15

[18]aneS₂O₄ shows an unusual gauche torsion angle at the SCH₂CH₂S moiety. This unexpected behaviour has to be attributed to a combined effect of all O-C-C-O moieties endo and the preferences of S atoms to adopt exo orientations in order to avoid unfavourable $O \cdots S$ interactions within the macrocyclic cavity.

Fig. 2. The structure of the [18]aneS₂O₄ ionophore. Primed atoms are related to unprimed atoms by the operation of a twofold rotation axis $(-x, y, \frac{1}{2} - z)$. Displacement ellipsoids enclose 30% probability surfaces.

Experimental

[15]aneS₂O₃ was prepared using a literature method (Bradshaw, Hui, Haymore, Christensen & Izatt, 1973) involving co-condensation of 1,2-ethanedithiol with 1,11-dichloro-3,6,9trioxaundecane under basic high-dilution conditions. [18]aneS₂O₄ was prepared in an analogous fashion (Bradshaw, Hui, Chan, Haymore, Izatt & Christensen, 1974) by cocondensation of 1,2-ethanedithiol with 1,14-dichloro-3,6,9,12tetraoxatetradecane, also under basic high-dilution conditions. Single crystals suitable for X-ray diffraction studies were obtained by employing a low-temperature two-phase diffusion technique in which *n*-hexane was allowed to diffuse into a solution of the relevant ionophore in EtOAc at 248 K, affording colourless crystals of high purity for both compounds.

Mo $K\alpha$ radiation

Cell parameters from 30

0.540 \times 0.424 \times 0.386 mm

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 14 - 17^{\circ}$

 $\mu = 0.410 \text{ mm}^{-1}$

T = 150.0(2) K

Block

Colourless

[15]aneS₂O₃

Crystal data

 $C_{10}H_{20}O_3S_2$ $M_r = 252.38$ Triclinic $P\overline{1}$ a = 7.213(2) Å b = 9.102(3) Å c = 10.080 (4) Å $\alpha = 80.49 (3)^{\circ}$ $\beta = 86.85 (3)^{\circ}$ $\gamma = 74.32 (2)^{\circ}$ $V = 628.4 (4) \text{ Å}^3$ Z = 2 $D_{\rm x} = 1.334 {\rm Mg m}^{-3}$

Data	collection

Stoe Stadi-4 four circle diffractometer ω -2 θ scans with on-line profile fitting (Clegg, 1981) Absorption correction: ψ scans $T_{min} = 0.776$, $T_{max} =$ 0.796 3173 measured reflections	1998 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0127$ $\theta_{max} = 25.05^{\circ}$ $h = -8 \rightarrow 8$ $k = -10 \rightarrow 10$ $l = -1 \rightarrow 11$ 3 standard reflections frequency: 60 min intensity decay: <0.5%
2173 independent reflections	intensity decay: <0.5%
Refinement	

Refinement on F^2	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0248$	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0666$	Extinction correction:
S = 1.037	SHELXL93 (Sheldrick,
2161 reflections	1993)
217 parameters	Extinction coefficient:
All H-atom parameters	0.008 (2)
refined	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.034P)^2]$	from International Tables
+ 0.242 <i>P</i>]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.06$	6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for [15]aneS₂O₃

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$$

х	у	z	U_{eq}
0.18663 (5)	0.29927 (4)	0.42663 (4)	0.02580 (12)
-0.0442 (2)	0.3556 (2)	0.34327 (15)	0.0250 (3)
-0.0299 (2)	0.3419 (2)	0.19462 (15)	0.0247 (3)
-0.25167 (5)	0.44147 (4)	0.10653 (4)	0.02969 (13)
-0.4101 (2)	0.3192 (2)	0.1650 (2)	0.0282 (3)
-0.3844 (2)	0.1795 (2)	0.0978 (2)	0.0279 (3)
-0.23096 (15)	0.05757 (12)	0.15869 (10)	0.0273 (2)
-0.1928 (2)	-0.0734 (2)	0.0916 (2)	0.0279 (3)
-0.0694 (2)	-0.2113 (2)	0.1773 (2)	0.0282 (3)
0.10615 (14)	-0.18137 (11)	0.20627 (10)	0.0260 (2)
0.2260 (2)	-0.3097 (2)	0.2888 (2)	0.0294 (3)
0.3903 (2)	-0.2640 (2)	0.3404 (2)	0.0318 (4)
0.33130 (15)	-0.15984 (11)	0.43535 (10)	0.0281 (2)
0.2766 (2)	-0.0015 (2)	0.3743 (2)	0.0264 (3)
0.2199 (2)	0.0954 (2)	0.48507 (15)	0.0247 (3)

Table 2. Selected geometric parameters (Å, °) for [15]aneS₂O₂

լոցյան	00203	
1.806 (2)	C8—C9	1.496 (2)
1.814 (2)	C9—O10	1.420 (2)
1.520 (2)	O10-C11	1.420 (2)
1.810 (2)	C11—C12	1.501 (2)
1.813 (2)	C12—O13	1.426 (2)
1.502 (2)	O13-C14	1.428 (2)
1.421 (2)	C14—C15	1.507 (2)
1.422 (2)		
102.97 (7)	O10-C9-C8	110.00 (12
113.88 (11)	C9-010-C11	111.40 (11)
112.49 (11)	O10-C11-C12	110.00 (13
103.27 (8)	013—C12—C11	113.14 (13
115.90 (11)	C12-013C14	113.24 (12
109.86 (12)	O13-C14-C15	107.77 (12
111.61 (11)	C14—C15—S1	113.12 (10
109.95 (12)		
	1.806 (2) 1.814 (2) 1.520 (2) 1.810 (2) 1.813 (2) 1.502 (2) 1.421 (2) 1.422 (2) 102.97 (7) 113.88 (11) 112.49 (11) 103.27 (8) 115.90 (11) 109.86 (12) 111.61 (11) 109.95 (12)	$\begin{array}{c} 1.8 \text{ (12) pine 52 - 63} \\ 1.806 (2) & \text{ (28-C9)} \\ 1.814 (2) & \text{ C9-O10} \\ 1.520 (2) & \text{ O10-C11} \\ 1.810 (2) & \text{ C11-C12} \\ 1.813 (2) & \text{ C12-O13} \\ 1.502 (2) & \text{ O13-C14} \\ 1.421 (2) & \text{ C14-C15} \\ 1.422 (2) \\ 102.97 (7) & \text{ O10-C9-C8} \\ 113.88 (11) & \text{ C9-O10-C11} \\ 112.49 (11) & \text{ O10-C11-C12} \\ 103.27 (8) & \text{ O13-C12-C11} \\ 115.90 (11) & \text{ C12-O13-C14} \\ 109.86 (12) & \text{ O13-C14-C15} \\ 111.61 (11) & \text{ C14-C15-S1} \\ 109.95 (12) \\ \end{array}$

C3-

C5--

-90.14 (12)	C8-C9-O10-C11	179.41 (12)
-165.93 (8)	C9-010-C11-C12	-168.57 (12)
-72.70 (12)	010-C11-C12-013	69.1 (2)
80.60 (13)	C11C12O13C14	-87.7 (2)
83.07 (14)	C12-013-C14-C15	-179.44 (12)
-175.80 (12)	013C14C15S1	169.94 (10)
-165.27 (12)	C2-S1-C15-C14	75.58 (12)
-58.7 (2)		
	-90.14 (12) -165.93 (8) -72.70 (12) -80.60 (13) 83.07 (14) -175.80 (12) -165.27 (12) -58.7 (2)	-90.14 (12) C8-C9-O10-C11 -165.93 (8) C9-O10-C11-C12 -72.70 (12) O10-C11-C12-O13 -80.60 (13) C11-C12-O13-C14 83.07 (14) C12-O13-C14-C15-S1 -175.80 (12) O13-C14-C15-S1 -165.27 (12) C2-S1-C15-C14 -58.7 (2)

[18]aneS₂O₄

```
Crystal data
                                        Mo K\alpha radiation
C_{12}H_{24}O_4S_2
M_r = 296.43
                                        \lambda = 0.71073 \text{ Å}
Monoclinic
                                        Cell parameters from 70
                                           reflections
C2/c
                                        \theta = 15 - 16^{\circ}
a = 15.9074 (12) Å
b = 9.5181 (8) Å
                                        \mu = 0.344 \text{ mm}^{-1}
                                        T = 295 (2) K
c = 12.5255 (10) Å
\beta = 124.351 (4)^{\circ}
                                        Column
                                        0.66 \times 0.47 \times 0.39 \text{ mm}
V = 1565.7 (2) Å<sup>3</sup>
                                        Colourless
Z = 4
```

intensity decay: <0.5%

 $D_x = 1.258 \text{ Mg m}^{-3}$

Data collection

Stoe Stadi-4 four circle	998 observed reflections
diffractometer	$[l > 2\sigma(l)]$
ω -2 θ scans [width (0.90	$\theta_{\rm max} = 24.99^{\circ}$
+ $(0.35 \tan \theta)^{\circ}$ in ω]	$h = -18 \rightarrow 15$
Absorption correction:	$k = 0 \rightarrow 11$
none	$l = 0 \rightarrow 13$
1268 measured reflections	3 standard reflections
1268 independent reflections	frequency: 60 min

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.0386$	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1194$	Extinction correction:
S = 1.030	SHELXL93 (Sheldrick,
1266 reflections	1993)
84 parameters	Extinction coefficient:
H atoms in fixed, calculated	0.029 (3)
positions	Atomic scattering factors
$w = 1/[\sigma^2(F_o^2) + (0.072P)^2]$	from International Tables
+ 0.636P]	for Crystallography (1992,
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and
$(\Delta/\sigma)_{\rm max} = -0.003$	6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for [18]aneS₂O₄

Um	$= (1/3) \sum \sum J \lim_{n \to \infty} a^* a : a$
νeq	$=(1_{j},2_{j}$

	x	у	Z	U_{eq}
C3	0.05320 (14)	-0.0089 (2)	0.2652 (2)	0.0553 (6)
S4	0.13222 (4)	0.13847 (7)	0.35757 (6)	0.0736 (3)
C5	0.1373 (2)	0.1318 (2)	0.5053 (2)	0.0658 (7)
C6	0.1919 (2)	0.0083 (3)	0.5902 (2)	0.0657 (6)
07	0.12773 (10)	-0.11056 (15)	0.53706 (13)	0.0588 (4)
C8	0.1783 (2)	-0.2391 (3)	0.5921 (2)	0.0673 (7)
C9	0.1064 (2)	-0.3562 (2)	0.5191 (2)	0.0672 (6)
O10	0.08108 (12)	-0.35828 (14)	0.39102 (14)	0.0586 (4)
C11	0.0111 (2)	-0.4675 (2)	0.3161 (2)	0.0700 (7)

Table 4. Selected geometric parameters (Å, °) for [18]aneS₂O₄

	[*]****		
C3C3' C3S4 S4C5 C5C6	1.511 (4) 1.802 (2) 1.807 (3) 1.492 (3)	07C8 C8C9 C9O10 O10C11	1.412 (3) 1.486 (4) 1.416 (3) 1.422 (3)
C607	1.413 (3)	C11C11'	1.484 (5)
C3C3S4 C3S4C5 C6C5S4 O7C6C5 C8O7C6	115.97 (11) 104.02 (9) 115.4 (2) 108.7 (2) 113.8 (2)	07—C8—C9 010—C9—C8 C9—010—C11 010—C11—C11'	108.7 (2) 109.6 (2) 112.0 (2) 110.0 (2)
S4 ⁱ C3 ⁱ C3S4 C3 ⁱ C3S4C5 C3S4C5C6 S4C5C607 C5C607C8	60.0 (2) 58.8 (2) 66.8 (2) -76.8 (2) 166.8 (2)	C6O7C8C9 O7C8C9O10 C8C9O10C11 C9O10C11C11' O10C11C11'O1	$\begin{array}{r} -173.7 (2) \\ 65.5 (3) \\ -179.2 (2) \\ -178.7 (2) \\ 0^{t} -77.8 (3) \end{array}$

Symmetry code: (i) $-x, y, \frac{1}{2} - z$.

The crystal of [15]aneS2O3 was cooled in the nitrogen gas stream of an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986).

For both compounds, data collection: DIF4 (Stoe & Cie, 1990a); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1990b); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL/PC (Sheldrick, 1992); software used to prepare material for publication: SHELXL93.

We thank the SERC for support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, bond distances and angles involving non-H atoms, and torsion angles have been deposited with the IUCr (Reference: NA1189). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bell, M. N. (1987). PhD thesis, Univ. of Edinburgh.
- Blake, A. J., Collison, D., Gould, R. O., Reid, G. & Schröder, M. (1993). J. Chem. Soc. Dalton Trans. pp. 521-531.
- Blake, A. J., Gould, R. O., Harris, S. G., Parsons, S., Radek, C. & Schröder, M. (1995). Acta Cryst. C51, 2186-2189.
- Blake, A. J., Gould, R. O., Radek, C. & Schröder, M. (1994). J. Chem. Soc. Chem. Commun. pp. 985-986.
- Blake, A. J., Gould, R. O., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Chem. Commun. pp. 974-976.
- Blake, A. J., Reid, G. & Schröder, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3849-3856.
- Bradshaw, J. S., Hui, J. Y., Chan, Y., Haymore, B. L., Izatt, R. M. & Christensen, J. J. (1974). J. Heterocycl. Chem. 11, 45-49.
- Bradshaw, J. S., Hui, J. Y., Haymore, B. L., Christensen, J. J. & Izatt, R. M. (1973). J. Heterocycl. Chem. 10, 1-4.
- Clegg, W. (1981). Acta Cryst. A37, 22-28.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Dalley, N. K., Larson, S. B., Smith, J. S., Matheson, K. L., Izatt, R. M. & Christensen, J. J. (1975). J. Chem. Soc. Chem. Commun. pp. 84-85
- Dalley, N. K., Larson, S. B., Smith, J. S., Matheson, K. L., Izatt, R. M. & Christensen, J. J. (1981). J. Heterocycl. Chem. 18, 463-467.
- Radek, C. (1995). PhD thesis, Univ. of Edinburgh, Scotland.
- Reid, G. (1989). PhD thesis, Univ. of Edinburgh, Scotland.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1992). *SHELXTL/PC*. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Stoe & Cie (1990a). DIF4. Diffractometer Control Program. Version 7.09/DOS. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1990b). REDU4. Data Reduction Program. Version 7.03/DOS. Stoe & Cie, Darmstadt, Germany.
- Wolf, R. E. Jr, Hartman, J. R., Storey, J. M. E., Foxman, B. M. & Cooper, S. R. (1987). J. Am. Chem. Soc. 109, 4328–4335.

respectively. Supersaturation was achieved by dissolving an excess of 10 to 20% of material, with respect to solubility, in hot solutions, which were then allowed to cool to 293 K without stirring. In both solvents, thick plate-like crystals appeared within one or two days. The crystal structure of diffufenican was determined as part of an investigation of the effect of different media on the crystal morphology. The ultimate objective was to obtain crystals shaped as isometrically as possible in order to facilitate the conditioning.

Acta Cryst. (1995). C51, 2671-2672

Diflufenican, *N*-(2,4-Difluorophenyl)-2-[3-(trifluoromethyl)phenoxy]-3-pyridinecarboxamide

GÉRARD PÈPE, GUILLAUME PFEFER AND ROLAND BOISTELLE

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

PHILIPPE MARCHAL

Rhône-Poulenc, CRIT, 69151 Décines Charvieu CEDEX, France

(Received 17 January 1995; accepted 15 June 1995)

Abstract

Diflufenican, $C_{19}H_{11}F_5N_2O_2$, has an approximately planar molecular skeleton, except for the 3-trifluoromethylphenyl group which lies almost perpendicular to the rest of the molecule. The amide N—H group and ether O atom are linked by an intramolecular hydrogen bond.

Comment

Diflufenican, (I), is an active material used as a weed killer. More precisely, it acts as a carotenoid synthesis and photosynthetic electron-flow inhibitor. Its identification code is CAS RN [83164-33-4]. This product is conditioned, in association with another weed killer (isoproturon), as a flowable and concentrated suspension (under the trademarks Quartz GT, Javelin or Fenican). It is applied on autumn-sown wheat and barley (before emergence or in early emergence) in order to control grass and broad-leaved weeds. In order to obtain good quality crystals for X-ray analysis, (I) was recrystallized from p-xylene and acetone solutions, using non-industrial solvents. The solubilities at 293 K in these solvents were 3.36 and 8.25 g per 100 g of solvent,

A strong intramolecular N9···O18 hydrogen bond [2.65 (1) Å] is observed. The π -system deformation can be characterized by the torsion angles C12--C17--C10-O11 3.8 (3), C24--C19--O18--C16 -77.4 (5), C5--C4--N9--C10 -6.3 (5) and C17--C10--N9--C4 -174.8 (5)°. The large values of the displacement parameters of the F atoms of the CF₃ group indicate slight disorder of these atom positions. The crystal is stabilized by π - π and van der Waals interactions.

Fig. 1. ORTEPII drawing (Jonhson, 1976) of the molecule of diflufenican with displacement ellipsoids of 50% probability.

Experimental

The title compound was recrystallized from *p*-xylene and acetone solutions (see *Comment*). The crystal density D_m was measured by flotation.

Crystal data

 $\begin{array}{ll} C_{19}H_{11}F_5N_2O_2 & Cu\ K\alpha\ radiation \\ M_r = 394.3 & \lambda = 1.5418\ \text{\AA} \end{array}$

Acta Crystallographica Section C ISSN 0108-2701 ©1995